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4 Lingqi Huang, and X. Sean Wang, Senior Member, IEEE

5 Abstract—Microphones attracted a lot of attentions from attackers due to the sensitivity of voice data: attackersmay control devices

6 through abusing their microphones, fingerprint devices bymeasuring their microphones, or directly monitor themicrophone readings

7 to steal users’ private data. Nevertheless, OS developers failed to address the severe consequences.While the current security

8 mechanism only offers a coarse-grained access control over the usage ofmicrophones: recording all sound or shutting off, it is necessary

9 to redesign themicrophone security mechanism to enforce fine-grained restrictions over the usage ofmicrophones. In this article, we

10 propose a fine-grainedmicrophone access control scheme onAndroid platform, referred to asFMC (FinerMicrophoneController). In our

11 scheme,microphone acoustic permissions are grantedwith three finer policies: treble policy, timbre policy and exclusion policy, with which

12 most of the attacksmentioned above can be defended against. In addition, to ease user’s policy management, we employ a smart policy

13 recommendationmethod, avoiding additional manual policy approvals. The results in our experiments show that a negligible 1.06 percent

14 performance overhead is incurred during policy enforcement. Besides, the policy recommendation system in FMC promises an accuracy

15 of 82.82 percent averagely.We believe that our work is a practical defense schemeagainst attacks exploitingmicrophone acoustic

16 permissions and should be employed byOS developers.

17 Index Terms—Access control, android, sensing control, microphone, permission management

Ç

18 1 INTRODUCTION

19 NOWADAYS, microphones have become an indispensable
20 part of nearly everymobile device to support various serv-
21 ices such as voice assistants and sound-based payment, bring-
22 ing convenience to our daily life. To support these services,
23 apps are widely using microphones.WeChat, for example, uses
24 microphones to support voice messaging for billions of users.
25 According to a survey posted by Pew Research Center [1] in 2014,
26 6.11 percent out of one million apps on Google Play Store are
27 requesting themicrophone permissionRECORD_AUDIO.
28 However, the existing access control and permissionman-
29 agement mechanism in mobile devices only enforces a
30 coarse-grained option for users: recording all sound or shut-
31 ting off. Several research efforts have shown that such a
32 mechanism can be exploited by attackers to steal users’ pri-
33 vate data. For example, unrestricted microphone access may
34 help attackers generate fingerprints [2], [3], [4], which can be
35 further used to track devices and thereby their owners. Com-
36 bined with data from other onboard sensors, real-time
37 recorded audio data help attackers extract sensitive informa-
38 tion (e.g., keystrokes, PINs, and environment information) [5],
39 [6]. Besides, with the imperfections in acoustic hardware and

40the perceptual differences between human ears and sensors,
41attackers can even construct an inaudible and hidden com-
42munication channel [7], [8].
43Two issues in the currentmicrophone acoustic permission
44management framework make mobile devices susceptible
45for attacks: i) unrestricted audio carry-on information access-
46ing; ii) unrestricted concurrent access to acoustic functionali-
47ties. In the current Android audio management framework,
48recorded audio information is fully provided to an app if the
49recording permission RECORD_AUDIO is granted. Here, no
50filter is applied to the audio data before these data are pre-
51sented to the app. Therefore, sensitive information which
52can be deeply analyzed from audio should be managed
53finely. Next, the current framework neglects the potential
54risks from the concurrent work of acoustic components. For
55instance, the audio covert channel [9] can be set up via abus-
56ing speakers and microphones simultaneously. This attack
57implies that the speaker, which is not covered in the current
58Android permissionmechanism, should be finely controlled.
59To address the above-mentioned security risks for mobile
60devices, prior works try to improve the current sensor man-
61agement framework by carrying out a fine-grained access
62control [10], [11]. However, researchers have rarely focused
63on the physical and concurrent features of acoustic compo-
64nents. The previous mechanisms usually control the audio
65data as a whole according to access context. In addition, the
66adoption of their schemes has extra overhead for users since
67few smart user management solutions or recommendations
68have been raised [12], [13].
69In this paper, we propose a fine-grained and smart micro-
70phone access control scheme, referred to as FinerMicrophone
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71 Controller (FMC) and implement its prototype on Android
72 platform. By defining three finer permissions over mobile
73 devices’ audio management and enforcing their correspond-
74 ing control policies, the usages of acoustic components in
75 mobile devices are effectively restricted. More specifically,
76 sensitive information carried in audio can optionally be
77 wiped out and the simultaneous use of speakers and micro-
78 phones is restricted under FMC’s control. As a result, its fine-
79 grained policies can effectively mitigate the microphone
80 related attacks [2], [3], [4], [5], [6], [8], [14] to varying degrees.
81 Moreover, FMC imposes little extra overhead on users as it
82 provides smart control recommendations of our proposed
83 finer permissions for users.
84 We summarize our contributions in this paper as follows:

85 � We thoroughly explore the attack surface rooted
86 from the embedded microphone acoustic permission
87 mechanism and find three weak points that require
88 fine-grained permission protection: i) unrestricted
89 access to the high frequency channel, ii) residual fin-
90 gerprint within audio, and iii) simultaneous usage of
91 acoustic components.
92 � To avoid unnecessarily leaking sensitive data (includ-
93 ing high frequency wave and fingerprint) to apps, we
94 design the treble policy and timbre policy to restrict the
95 use of high frequency channel and fingerprints
96 respectively. Specifically, we add a high-frequency
97 filter to enforce the treble policy and an acoustic feature
98 eraser to enforce the timbre policy.
99 � Considering the possible severe consequences brought

100 by the simultaneous use ofmicrophones and speakers,
101 we apply aDynamic Separation ofDuty (DSoD) policy
102 over microphones and speakers to the Android audio
103 management framework to enforce the exclusion policy.
104 � We design a policy recommendation framework for
105 the smart recommendation of the three new policies
106 mentioned above. We also implement a prototype,
107 referred to as FinerMicrophone Controller, and apply
108 it on Android devices.
109 To validate the effectiveness and measure the overhead of
110 our proposed FMC, we conduct a series of experiments,
111 including overall performance evaluation and a series of
112 operational delay tests. The evaluation results show that FMC
113 has only a 1.06 percent performance overhead. In addition,
114 according to the evaluation experiments on compatibility and
115 functional effectiveness, we find that neither crashes nor
116 errors occurred during the whole evaluation. Thus, FMC
117 offers a smooth and secure user experience. Finally, our
118 evaluation of 33,972 apps from Google Play shows that the
119 current third-party app markets require a fine-grained and
120 smart microphone permission management framework to a
121 large extent.
122 RoadMap.The rest of paper is organized as follows: Section 2
123 introduces the background and motivation; Section 3 explains
124 adversaries addressed in our work and presents our threat
125 model; Section 4 presents the design of FMC; Section 5 demon-
126 strates the implementation of the key modules in FMC, in
127 which the policy enforcement mainly lies in the native layer of
128 Android, then effectively prevents our codes from being
129 bypassed or tampered; Section 6 evaluates FMC for its perfor-
130 mance, compatibility and effectiveness; Section 7 empirically

131studies the popular appmarket Google Play Store to investigate
132the microphone permission declaration in the real world; Sec-
133tion 8 discusses the limitations of FMC and introduces our
134future work; Section 9 overviews the related works; Finally,
135Section 10 summarizes ourwork.

1362 BACKGROUND AND MOTIVATION

137Most of the sensor-based attacks, especially voice-based
138attacks, viciously exploit the inherent vulnerabilities within
139either acoustic features or operating systems. In this section,
140we present a brief introduction about acoustic features,
141onboard sensors and Android permission administration.
142Thenwe thoroughly analyze the issues of the current Android
143permissionmechanism,whichmotivates our research.
144Acoustic Features. There are three physical acoustic fea-
145tures of the human voice:

146� Volume, a.k.a. loudness, is positively correlated to the
147power of the signal. It is also referred to as the
148energy intensity of audio signals.
149� Pitch, which represents the frequency, is a perceptual
150property of sounds. It reflects the speed of vibration.
151� Timbre, which is characterized by the waveform
152within a clip of audio signal, represents the feature
153of the sound generator. It can be used to distinguish
154different instruments or different people.
155The pitch range varies with different speakers. Human
156ears have a limited audible range, which is from about 20 Hz
157to 20,000 Hz for a healthy adult. But the frequency range
158beyond 20,000 Hz can also carry abundant information. Sev-
159eral apps use these parts precisely to develop their functions
160(e.g., Alipay’s soundwave payment uses both low-frequency
161range and high-frequency range to make a payment). How-
162ever, the mobile phones’ surplus range, beyond the necessary
163requirements of apps, also becomes the key to various inaudi-
164ble attacks. That is, the inaudible audio can be exploited to
165extract sensitive information or initiate other severe attacks [8],
166[15]. Besides, the individual difference in high frequency
167range is enough for attackers to fingerprint both the user and
168the device [4].
169A series of features and indices are proposed in recent
170years to better characterize voice signals for all kinds of pur-
171poses, such as 1) RMS, which stands for the square root of
172the arithmetic mean of the squares of the signal strength at
173various frequencies, 2) Mel-Frequency Cepstrum Coefficient
174(MFCC), which is a spectral derived index, and 3) Spectral
175Entropy, which mainly depends on the peaks of a spectrum
176and their locations. Among these features and indices,
177MFCC is one of the most widely used features in speech rec-
178ognition and has been proved to be superior in fingerprint-
179ing acoustic sources, including smartphones [3]. MFCCs are
180the coefficients that collectively make up a mel-frequency
181cepstrum (MFC). Essentially, MFCCs of a signal are a small
182set of features which concisely describe the overall shape of a
183spectral envelope, and they are often used to describe the
184timbre. That is, destroying theMFCC of a piece of audio data
185means an alteration of the timbre. Then the audio would not
186be recognized as from the same source anymore.
187Acoustic Components in Mobile Devices. On a mainstream
188mobile phone, there can even be two or more microphones
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189 for different purposes. For example, Nexus 5X places two
190 microphones at the top and the bottom of the device respec-
191 tively, as shown in Fig. 1. Generally, the microphone on the
192 top is used for denoising, while the bottom one is primarily
193 used for recording. In Android, apps can record via Audio-
194 Record API to receive Pulse-Code Modulation (PCM) for-
195 mat audio data. There are mainly three parameters for this
196 set of APIs: sound channel, sampling bit, and sampling rate.
197 The sound channel can be set as mono or stereo. The sam-
198 pling bit refers to how much storage will be used to store
199 one sample. Basically, the sampling bit can be set as 8 bits or
200 16 bits. The sampling rate, refers to as the number of audio
201 samples gathered in a second, is usually set as 16 kHz or
202 44.1 kHz. In general, the quality of an audio file increases
203 while the sampling rate increases, and the sound file
204 restores the sound with higher fidelity. Microphones absorb
205 sound waves and output analog electronic signals. Analog
206 to digital conversion circuit will then digitalize the analog
207 signal, and its output can be recognized by digital circuits.
208 The speaker in an Android device is not covered in
209 Android permission framework. That is, there is no permis-
210 sion prerequisite for apps to use the speaker. It is reasonable
211 when we consider the speaker as an information output com-
212 ponent only. However, the concurrent use of microphones
213 and speakersmay result in a security hazard. In thework [16],
214 a speaker-microphone device fingerprintingmethod has been
215 proposed to uniquely identify the devices. Note that, FMC
216 proposed in this paper is motivated to put forward a novel
217 policy, exclusion policy, to finely control the sensitive access to
218 the speaker.
219 In a word, these acoustic components on phones not only
220 make it easy for the apps to collect data, but also bring the
221 risks of leaking data.
222 Sensor Permission Administration on Android. An Android
223 app, which runs in a limited-access sandbox, has to request
224 corresponding permissions if it needs to access resources or
225 information outside its own sandbox. Every app contains
226 an AndroidManifest.xml file in its installer root direc-
227 tory to declare all the permissions required. From Android
228 6.0 (API level 23) on, a subset of permissions can be dynami-
229 cally revoked instead of all being fixed after the installa-
230 tion [17]. Onboard sensors, including cameras, microphones

231and GPS are all protected with such permission restrictions,
232while major standard sensors (i.e., accelerometer, gyroscope,
233pressure, gravity) are not protected by Android permission
234mechanism. Permissions on Android platform are divided
235into four basic types of security level, i.e., normal, dangerous,
236signature, and signatureOrSystem, among which normal and
237dangerous are the two most common types. The microphone
238permission belongs to dangerous permissions, in which case
239an Android device will prompt users to approve or reject
240the request explicitly at runtime. In Android, an app must
241have RECORD_AUDIO permission to legally access audio sen-
242sors. Once it gets the permission, there are two sets of APIs to
243access audio sensors: AudioRecord, which directly pro-
244vides a raw sound stream for the app; and MediaRecord,
245which offers a compressed audio file.
246With the introduction of Android runtime permissions,
247users now have better control over permissions than before,
248because they can freely turn on or turn off any single permis-
249sion at any time. However, the coarse granularity [18] of the
250RECORD_AUDIO permission is still problematic. Namely, the
251microphone permission can only be set to either on or off,
252while the carried-on information like environment signals
253cannot be separately reserved or wiped out.

2543 THREAT MODEL

255We consider third-party apps that use microphones as the
256adversaries in our threat model. The adversaries already
257have the permission to use the embedded microphones on
258the hosting phones. Users would not revoke the permission
259even if they can do so with the help of runtime permission,
260because the users need the adversarial apps to complete their
261claimed legitimate functionalities related to microphones,
262like online chatting and voice assistant.
263The adversaries assumed in this paper are curious about
264the auxiliary sensitive information carried by voice data,
265including but not limited to the location, the identity of a
266device, and the identity of a user. These data are obliviously
267sensitive and valuable for the adversaries. Meanwhile, it is
268difficult to obtain these data, because they are usually pro-
269tected by the corresponding permissions. For instance, a
270device’s ID can only be accessed with READ_PHONE_STATE

271permission. Similarly, the location information should be
272accessed with ACCESS_FINE_LOCATION or ACCESS_-

273COARSE_LOCATION permission.
274However, using the audio data, the adversaries can
275acquire sensitive information without the designated per-
276missions. The reason is that the information carried by audio
277is far richer than apps’ actual needs, and the current audio
278management does not sanitize the data before handing them
279over to apps. For example, via recording APIs, a voice chat
280app can get from both the audio’s high-frequency compo-
281nents and the background noise surrounding its user, even
282though the information is irrelevant with and would not be
283helpful to the claimed function of the app.
284We categorize the existing microphone-related attacks
285via third-party apps into three classes as follows.

286� Adversaries trying to infer or steal sensitive infor-
287mation (e.g., location, keystrokes) from the high
288frequency audio channel.

Fig. 1. Nexus 5X devices used in our work. Each device embeds more
than one microphones.
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289 � Adversaries trying to uniquely identify devices or
290 even users. Through device identification, the adver-
291 saries can thereby mark or even track the devices.
292 These attacks mainly exploit the acoustic features
293 carried by audio data collected through micro-
294 phones [2], [3], [4].
295 � Adversaries trying to inject abnormal signals into the
296 microphone recordings. The injected data can even
297 be utilized to take control of the devices. Such injec-
298 tions can be finished in an inaudible way through
299 the high frequency channel [8], [19].
300 Note that, some of the attacks mentioned above can be
301 accomplished through the collaboration of microphone and
302 other onboard sensors on smart devices. Our work only
303 considers threats resulted from microphone acoustic per-
304 mission management, while other sensors could also be pro-
305 tected following the same routine.
306 To eliminate the threats above, our work introduces three
307 fine-grained sub-permissions to restrict apps’ microphone
308 usage. Moreover, a permission recommendation method is
309 proposed to help users intelligently set such sub-permissions,
310 relieving users of the policy administration burdens.

311 4 FMC: DESIGN

312 We design FMC in order to mitigate the voice-based attacks
313 in mobile devices. The basic idea of our design is to split the
314 current coarse RECORD_AUDIO permission into three sub-
315 permissions to counter the mentioned threats. Further, we
316 provide a smart recommendation service to reduce admin-
317 istration burdens of users. The overall design is built on the
318 current third-party app market’s client-server model.
319 As shown in Fig. 2, the framework of FMC consists of
320 two main parts: (1) An Acoustic Description-to-Permission
321 (ADTP) inference module, which is used to help app markets
322 automatically recommend acoustic sub-permissions of apps
323 to users. For apps uploaded to third-party app markets like
324 Google Play Store, developers are required to submit a brief
325 description of their apps to explain the apps’ main functions
326 and to provide security-related information like the permis-
327 sions required by the apps. This module leverages Natural
328 Language Processing (NLP) technologies to analyze the descrip-
329 tion for each app and work out their actual required level
330 of information from the audio data. Accordingly, the module

331can decide if an app requires the three sub-permissions
332we propose. The output of the module is three bits in our
333implementation, indicating whether each of the three sub-
334permissions should be granted to the app. (2) A Policy Enfor-
335cement Module, which enforces sensitive data sanitization
336and microphone-speaker concurrent use management
337system-wide. This module is embedded at the native layer of
338Android audio framework. It receives the output from ADTP
339and user’s adjustment if necessary and accordingly enforces
340the policies for each app.
341When a new app is uploaded to the app market, it is
342added into the Application Description Dataset. ADTP usu-
343ally finishes its training beforehand (the training can be trig-
344gered manually by the manager or can be set automatically)
345and stores a pre-trained NLP model at the market side. As
346shown in Fig. 2, from a client side perspective, a complete
347request-solution flow is as follows:

3481) The user downloads an app from the app market and
349initiates an installation. An embedded application
350Package Installer is responsible for the installation.
3512) Once Package Installer realizes that a new app is to be
352installed, it queries the market side with the package
353name of the app.
3543) ADTP at the market side receives the query and looks
355for the description of the app. Furthermore, it pro-
356vides a permission recommendation as the answer to
357Package Installer.
3584) Package Installer shows the recommendation to the
359user while the user can decide whether to adjust the
360decision on each sub-permission. The final permis-
361sion selections would be passed to the Policy Enforce-
362mentModule.
3635) Finally, the Policy Enforcement Module starts work-
364ing, enforcing corresponding policies when the app
365runs.
366In our design, we use Package Installer as a control center,
367and it is responsible for transferring messages. The two-step
368interaction between client and server is fast and efficient. Note
369that, here, FMC shows a basic and key process to intelligently
370and finely control microphone-relevant operations. When
371Android apps update their versions, FMCwouldkeep the pre-
372vious settings or recommend new settings. The current design
373can be extended to accommodate for the new requirements.

Fig. 2. The design of FMC framework with the interface of modified Package Installer (right) to check and confirm new sub-permissions. The recom-
mended sub-permissions would be checked first and the user can reselect as his or her preferences.
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374 4.1 Fine-Grained Acoustic Permissions

375 As mentioned, the threats from third-party apps are mainly
376 due to the surplus range of frequency, the excess of acoustic
377 features in the audio data, and unlimited concurrent usage
378 of acoustic components in mobile devices. Inspired by the
379 acoustic features and the existing categories of attacks
380 pointed out in Section 3, we propose three sub-permissions
381 for audio usages to supplement the originalRECORD_AUDIO:

382 � ACOUSTICS_TREBLE represents if the app is allowed
383 to use the high-frequency components of the audio.
384 This sub-permission prevents apps from freely using
385 the high frequency channel, which could be further
386 exploited to get the location, identifier, or other sensi-
387 tive information. When this sub-permission is not
388 granted, we enforce the treble policy which filters out
389 the high frequency channel.
390 � ACOUSTICS_TIMBRE represents if the app can
391 access the acoustic fingerprints either of the device or
392 of the user inside the audio. This sub-permission pre-
393 vents adversaries from identifying or tracking devi-
394 ces or their owners. This sub-permission is designed
395 to enforce the timbre policywhich destructs the acous-
396 tic features contained in the audio data.
397 � ACOUSTICS_EXCLUSION represents if the app can
398 use microphones and speakers simultaneously. This
399 sub-permission prevents apps from generating acous-
400 tic fingerprints of the phone or injecting voice com-
401 mands to the phone. This sub-permission is designed
402 to enforce the exclusion policywhich limits the concur-
403 rent usage ofmicrophones and speakers.
404 These three sub-permissions can be judged and enforced
405 independently, effectively countering each of the threats
406 mentioned in Section 3. Note that, only when RECORD_

407 AUDIO permission is granted, will the sub-permissions take
408 effect to limit the privilege of RECORD_AUDIO permission.

409 4.2 ADTP: Permission Filtering and Matching

410 The goal of ADTP is to work out whether each of the sub-
411 permissions proposed in Section 4.1 should be granted to
412 each app according to their descriptions. Here, we use Long
413 Short Term Memory Networks (LSTM) [20], a variant of RNN
414 which is capable of learning long-term dependencies, to
415 help translate the descriptions into permissions. We choose
416 LSTM here because of its superior performance on classifi-
417 cation and prediction problems. The module is assumed to
418 be running at the server side, when an app with its descrip-
419 tion is uploaded to a market.
420 ADTP stores a pre-trained NLP model and uses it to ana-
421 lyze the description to figure out the necessity of the three
422 sub-permissions. Themodule not only extracts the keywords
423 inside the description, which can directly reflect the require-
424 ments of permissions, but also analyzes the description
425 semantics in order to get a higher precision in prediction. For
426 example, when the word microphone does not appear explic-
427 itly in the description, but the words like voice chatting or on-
428 line chatting are found, the framework would recommend
429 using microphones. Under this circumstance, all three sub-
430 permissions would be granted to preserve user experiences:
431 the microphone and speaker are supposed to be working at
432 the same time to support instant communication, and any

433acoustic features of the caller should not be destroyed in
434order to provide a regular listening experience.

4354.3 Policy Enforcement

436The Policy EnforcementModule in FMC is designed to restrict
437the usage of audio collection and speaker according to the
438settings of the sub-permissions proposed in Section 4.1.
439The Policy Enforcement Module acquires the permission
440list from the server through a query started by Package
441Installer when a user installs an app. Then the following
442three policy enforcement elements are applied according to
443the acquired permission list when FMC serves the app with
444audio data.
445Treble Policy: Low-Pass Filtering. If the sub-permission
446ACOUSTICS_TREBLE is not granted, the audio data are sani-
447tized with a low-pass filter before handed over to apps. This
448policy enforcement ensures that sensitive information on the
449high frequency channel is wiped out, while the enforcement
450has minimal impact on user experiences. Usually, apps need
451only audible components, while inaudible components like
452high frequency components are not required.
453This low-pass filter directly prevents adversaries from
454launching attacks via the high frequency channel. For exam-
455ple, those apps trying to listen at the high frequency covert
456channel can no longer receive information delivered by the
457transmitters.
458Timbre Policy: Acoustic Feature Destruction. Acoustic fea-
459tures, includingMFCC, are usually studied as the key to fin-
460gerprinting devices as well as users. In order to protect users
461from being identified or tracked, when the sub-permission
462ACOUSTICS_TIMBRE is not granted, we need to destroy the
463acoustic features contained in the audio data. Note that, the
464human readable information in the audio data should be pre-
465served. Since MFCC is the de facto acoustic feature in finger-
466printing, the timbre policy enforcement aims to destroy it
467without sacrificing the functionalities of apps.
468Exclusion Policy: Permission Exclusion Control. The current
469Android system does not provide a mechanism to restrict
470the concurrent use of different acoustic components. How-
471ever, it has been confirmed that the concurrent use of a
472microphone with a speaker can result in severe attacks [4],
473[9]. Therefore, our framework is designed to restrict the
474work of the speaker when the microphone is being used by
475an app with the sub-permission ACOUSTICS_EXCLUSION

476revoked. Note that, in this paper, we leverage the concept of
477Separation of Duty (SoD) [21], [22] to mitigate the risk
478resulted from the collusion between the usages of micro-
479phones and speaker. To be more specific, the exclusion policy
480reflects the principle of Dynamic Separation of Duty, which
481means that a subject cannot simultaneously activate or use
482two sensitive permissions although they have been granted
483both at that time.
484Exception. The Policy Enforcement Module also provides
485an adjustment mechanism for users. That is, users can over-
486ride the recommendation of ADTP at both installation and
487run time.

4885 FMC: IMPLEMENTATION OF KEY MODULES

489In this section, we explain how the key modules of our
490prototype on Android are implemented. We leverage NLP

HAN ET AL.: SMART FRAMEWORK FOR FINE-GRAINED MICROPHONE ACOUSTIC PERMISSION MANAGEMENT 5
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491 technologies to implement ADTP. In addition, low-pass fil-
492 ter, human acoustic fingerprint interference and exclusion
493 control of acoustic components are implemented to enforce
494 our proposed acoustic policies.

495 5.1 ADTPModule

496 When we build ADTP, we employ Sequence Semantic
497 Embedding1 (SSE), which is a TensorFlow based encoder
498 framework toolkit for NLP related tasks and is now a com-
499 mercial text classification toolkit, to doDescription-to-Permis-
500 sion translation. Benefiting from TensorFlow’s convenient
501 deep learning blocks like LSTM, SSE can easily support large
502 scale NLP related machine learning tasks, including text
503 classification.
504 In order to train an effective permission classification
505 model, we need to collect and label app description data.
506 Thus, we first collect a large number (615,781 apps) of
507 description samples from Google Play Store in July, 2018.
508 After translating all non-English descriptions (8,532 apps)
509 into English using Google Translate and filtering out non-
510 English characters, special Unicode symbols, and blanks in
511 the descriptions, we gather 33,972 samples, which request
512 the microphone permission in their AndroidManifest.

513 xml file. They fall into 32 categories as shown in Table 1.
514 Next, we label all the samples on whether they entail
515 demands for the three sub-permissions. The labels are gener-
516 ated based on keywords and validated by us. The keyword-
517 based labeling process can be summarized as follows: for
518 each triplet of our proposed policy composition, we first scan
519 all the description texts, and search for a pre-defined set of
520 keywords. We label each app using a triplet of bits, each rep-
521 resenting one policy, where1 means it should be enforced to
522 restrict the app and 0means otherwise. For example, the key-
523 words for policy composition 000 include voice chat, talk to,
524 video chat and even some more complex phrases like high-
525 quality recording, communicate with the parent, emergency call. For
526 instance, Shazam, an app for instant music identification and
527 discovery, is labeled as 001, which stands for implementing

528exclusion policy only, because we find identify music and find
529new music as keywords in its description, indicating that Sha-
530zammay need the microphone when it is trying to identify the
531played music. In this case, the speaker is not required. Mean-
532while, as a music recognition app, in order to identify a song
533correctly, Shazam should preserve the full frequency informa-
534tion and the human voice contained in the music played
535around. Therefore, we do not restrict its use by enforcing the
536treble policy or the timbre policy. Conversely, Arabic To English:
537Voice & Text Translation Free, a translation app in our data set,
538is recognized and labeled as 110, since keywords such as voice
539translator, text to speech and voice recognition are found. Utility
540tools such as translators can function normallywithout timbre
541information of the speaker as well as treble information, since
542the frequencies of human voice are mainly distributed in a
543low-frequency interval.
544After keyword recognition, peer volunteers check all
545labels together with the descriptions manually and adjust
546the labels according to their experiences.
547In order to cross validate the model’s prediction accuracy,
548we apply a 10-fold cross validation on themodel. After train-
549ing the ADTPmodel using the SSE’s dual-encoder model on
550the training set, we validate the model using the validation
551set. The three bits are evaluated as a whole, which means
552only when all three bits are correctly predicted, do we judge
553it as a true-positive sample. The average validation accuracy
554of ten rounds is 82.82 percent averagely, with a variance of
5554:96� 10�5.
556Note that, in this paper, theADTPmodel is trained for our
557proposed sub-permissions based on the data only from Goo-
558gle Play Store. Hence, we cannot guarantee that the perfor-
559mance of our current model is the same for app descriptions
560from some other app markets. However, the methodology
561itself is general and can be easily extended to othermarkets.

5625.2 Policy Enforcement Module

563As shown in Fig. 2, the Policy Enforcement Module consists
564of three sub-modules: 1) a low-pass filter for high frequency
565acoustic information filtering, 2) human acoustic fingerprint
566interference, and 3) exclusion control of acoustic components.
567When a user downloads and installs an app from an app
568market, Package Installer will then obtain the recommended
569configuration of the sub-permissions from ADTP in FMC.
570Then, the recommended sub-permissions configuration
571would be shown to the user for confirmation. During this
572process, the user can override the recommendations. An
573interface of the modified Package Installer is shown at the
574right side of Fig. 2. Note that, once a sub-permission is
575checked in this interface, which means the user allows the
576access of the corresponding information or usage, FMC
577would not enforce its mapped policy.
578After the user confirms or adjusts the permission configu-
579ration, if some of the sub-permissions are not granted, i.e., the
580three-bits is not equal to 000, the Policy Enforcement Module
581in FMC will take the corresponding countermeasures to pro-
582tect users’ acoustic security and privacy. The overall deploy-
583ment of FMC’s Policy Enforcement Module in Android 8.0 is
584shown in Fig. 3 as it runs through almost every level of
585Android, including the Java Native Interface (JNI) layer,
586which provides native interfaces for Android apps, andmight
587help these apps bypass the current Android permission

TABLE 1
Application Category Composition in Google Play Store Dataset

Category Number Category Number

ART&DESIGN 50 LIFESTYLE 2,485
AUTO&VEHICLES 113 MAPS&NAVIGATION 329
BEAUTY 51 MEDICAL 796
BOOKS&REFERENCE 612 MUSIC&AUDIO 3,504
BUSINESS 3,562 NEWS&MAGAZINES 613
COMICS 51 PARENTING 65
COMMUNICATION 2,388 PERSONALIZATION 356
DATING 96 PHOTOGRAPHY 794
EDUCATION 3,598 PRODUCTIVITY 1,492
ENTERTAINMENT 2,420 SHOPPING 407
EVENTS 67 SOCIAL 1,150
FINANCE 749 TOOLS 2,275
FOOD&DRINK 219 TRAVEL&LOCAL 1,154
GAMES 2,798 VIDEO PLAYERS&EDITORS 720
HEALTH&FITNESS 886 WEATHER 31
HOUSE&HOME 81 LIBRARIES&DEMO 60

These 33,972 apps from 32 categories are downloaded in July, 2018.

1. Sequence Semantic Embedding. https://github.com/eBay/
Sequence-Semantic-Embedding
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588 mechanism in the framework layer. Specifically, we modify
589 the audio framework of Android system, and our main con-
590 trol points are rooted at the native layer to ensure that no
591 bypassing attack at theAndroid framework layer is feasible.
592 To show how our Policy Enforcement Module works, we
593 take AudioRecord, an Android recording API, as an exam-
594 ple. At the application layer, after the sub-permissions of a
595 certain app are configured as recommended or manually
596 set by a user, a configuration item, which mainly consists of
597 user identification (UID), package name and the three-bits
598 permission list, is saved in a SQLite database. The database,
599 named fmc.db, is created and managed by a system-level
600 built-in app named as fmcServer. Note that, root privilege is
601 required when trying to make modification to the system
602 app of Android, thus our fmcServer and fmc.db can only be
603 modified by system-level apps, such as Package Installer.
604 Every time an app invokes the API of AudioRecord, we
605 obtain its package name and UID at the native libraries
606 layer of Android audio framework, and query fmcServer
607 which provides a ContentProvider to fetch the corre-
608 sponding sub-permissions configuration stored in fmc.db.
609 The configuration is delivered within the audio framework
610 with the help of Binder Inter-Process Communication (IPC),
611 which follows the arrow flow as shown in Fig. 3. Finally, the
612 app’s configuration of the corresponding sub-permissions is
613 sent to our control points, whose positions at streamHal-
614 Hidl lie in libaudiohal.
615 Three control points to enforce the treble policy, timbre pol-
616 icy and exclusion policywork in streamHalHidl separately,
617 although they take duties similarly, i.e., querying the config-
618 uration of the sub-permissions and enforcing the corre-
619 sponding policies accordingly.

620 � For the treble policy, a low-pass filter, which is a six
621 order Butterworth filter, is inserted to filter out infor-
622 mation whose frequency is above 8 kHz (under the
623 sample rate of 44.1 kHz). We use the Butterworth fil-
624 ter rather than an ideal filter to balance the time

625consumption and the low-pass filtering effect. Note
626that, we would do nothing but return the original
627audio data when the sampling rate of a recording
628task is set to smaller than 16 kHz, because, according
629to Nyquist sampling theorem, only information
630whose frequency is under half of the sample rate is
631preserved.
632� For the timbre policy, we add a pitch shifter to inter-
633fere with the acoustic features of human voice.
634Namely, we change the pitch or disturb the MFCC of
635the recorded audio while maintaining its speed. We
636choose smbPitchShift [23], which is a classical and
637robust algorithm using Short-Time Fourier Trans-
638form (STFT), to complete pitch shifting.
639� For the exclusion policy, we monitor the recording and
640playing states of the device in real time, then ensure
641that no audio playing happens when the microphone
642is in use. To achieve monitoring, we add a section of
643codes in StreamHalHidl, which keeps track of the
644exact current state of audio recording (from subclass
645StreamInHalHidl) and media playing (from sub-
646class StreamOutHalHidl). As mentioned, the con-
647figuration parameters have already been sent to
648StreamHalHidl. Every time, when the audio data
649to be played is going to be written in the buffer, the
650added codes would check the configuration parame-
651ters. If exclusion control is required, once we find that
652the microphone and speaker are both in use, we
653replace the current audio fed to the speaker with
654silent content. When the recording ends, we stop the
655replacement at once and return the speaker to its orig-
656inal playing state.
657Note that, all the monitoring and execution codes of FMC
658are running in processes different from the monitored third-
659party apps. Besides, they possess different UIDs. As a result,
660we effectively stop the monitored apps from bypassing or
661tampering with FMC’s monitor and processing.

6626 FMC: EVALUATION

663In order to measure the overhead brought by FMC and
664examine if FMC defends against acoustic attacks effectively
665while preserving usability, in this section, we conduct a
666series of evaluation experiments. All evaluation experiments
667were run on two Nexus 5X, which are shown in Fig. 1. The
668devices are equipped with 6 core CPU, 2 GB of RAM, and
669runAndroid 8.0.

6706.1 Performance

671Operational Latencies. It is necessary to measure the delays
672incurred by FMC, because latencies are crucial for acoustic
673services. In this part, we evaluate the audio playing and
674recording latencies brought by FMC.
675We use the audio latency defined by Google2 to measure
676the latencies of the acoustic components. We also use the
677audio latency increment to represent the overhead of our
678framework FMC. For audio apps, there are five common
679types of audio latencies, which are Audio output latency,

Fig. 3. The overall employment of FMC in Android 8.0. Three control
points to enforce treble policy, timbre policy, and exclusion policy root in
streamHalHidl lying in libaudiohal separately.

2. Audio latency: https://developer.android.com/ndk/guides/
audio/audio-latency.html
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681 Warmup latency. We choose Round-trip latency, representing
682 the sum of input latencies, app processing time and output
683 latencies, as a major index to measure the operational laten-
684 cies brought by the low-pass filter, which implements the
685 treble policy, and acoustic feature destruction, which imple-
686 ments the timbre policy. A rough estimation of Round-trip
687 latency is acquired by the testing app provided by Google.
688 Specifically, Larsen test3 is used to perform a round-trip
689 latency test. We test each of the five microphone sources 20
690 times, then compare the latencies introduced with those of
691 an unmodified system.
692 In all experiments conducted in this section, the sampling
693 rate is set to 48 kHz; the player buffer and record buffer are
694 both 192 frames when the audio thread type is native (JNI).
695 That is, they are both 1,920 frames when the audio thread
696 type is Java; the buffer test duration is 5 seconds; the number
697 of simulated load threads is 4; and the mono channel setting
698 is used.
699 As shown in Table 2, the acoustic feature destruction
700 shows the longest latencies. When we set VOICE_RECOG-
701 NITION and VOICE_COMMUNICATION as microphone sour-
702 ces, the latencies with acoustic feature destruction triggered
703 is about 50 percent more than that of the original system.
704 However, as all the incurred latencies are within 40 millisec-
705 onds (ms), user experiences are barely affected.
706 We also conduct an experiment to evaluate the latencies,
707 or reaction time, when FMC switchs between audio record-
708 ing and audio playing. Since FMC’s exclusion policy prohibits
709 the simultaneous usage of microphones and speaker, there
710 is some reaction time for the framework to switch between
711 playing and recording when the sub-permission of ACOUS-
712 TICS_EXCLUSION is not granted, which means that the
713 exclusion policy is enforced. In order to measure the latencies,
714 we play a clip of music in the background. At the same time,
715 we open a recording app and start to record and then stop
716 recording. We record the whole process and analyze the
717 time differences by counting video frames in order to get a
718 rough result of delays.
719 In general, the latencies brought by the switch-over are
720 around 200�300 ms. The average reaction time of switching
721 from recording to the playing state is 224 ms, while the aver-
722 age reaction time of switching from playing to the recording
723 state is 297 ms, as recorded in 10 dependent tests we have
724 conducted. These latencies are caused only when one func-
725 tion (audio recording or audio playing) acts while another

726function is forced to stop. The latencies seems a little high,
727but they do not happen during continuously playing or
728recording in, e.g., VoIP apps, which should not be enforced
729the exclusion policy. As a result, the user experiences in this
730experiment are barely affected by these latencies.
731In fact, there is hardly any observable delay or abnormal-
732ity during the entire testing process. We believe that the
733operational latencies brought by FMC are acceptable.
734System Overhead. FMC runs across the application, appli-
735cation framework, and native libraries layers of Android. It
736might cause performance degradation and bring about sys-
737tem overhead. To quantify the system-wide overhead, we
738make a comparison ofAnTuTu [24] (a popular benchmarking
739tool) scoreswith andwithout FMC.We benchmarkNexus 5X
740with and without FMC five times respectively, and the aver-
741age results are shown in Table 3. We conclude from Table 3
742that FMC only imposes a negligible overhead of 1.06 percent
743on the overall system.

7446.2 Effectiveness of Balancing Security andUsability

745We evaluate whether FMC can defend against the afore-
746mentioned acoustic attacks without affecting apps’ normal
747functionalities. In addition, we demonstrate the effective-
748ness of FMC’s acoustic feature destruction, which can
749defend against the acoustic fingerprint interference attack.

7506.2.1 Functional Effects of FMC on Apps

751We choose a mainstream speech recognition app, Otter
752Voice Meeting Notes4 (Otter), to evaluate whether apps can
753work as normal even when FMC is in effect.
754Our evaluation scheme is as follows: First, we select 10
755pieces of inaugural speech corpus. For each speech, we ran-
756domly select several 3 to 5minutes sound clips, each contain-
757ing 600 to 800 words and then let Google Text-to-Speech
758(TTS) read these texts in male and female tune separately. In
759the meantime, we use Otter to recognize the voice with or
760without FMC running. Under the setting that FMC is run-
761ning, attempts are made for ACOUSTICS_TREBLE revoked
762only (i.e., the treble policy is enforced), ACOUSTICS_TIMBRE
763revoked only (i.e., the timbre policy is enforced), and both
764revoked (i.e., both policies are enforced). At last, we compare
765the recognition results with the original speech texts to check
766whether FMC affects Otter’s recognition accuracy. The text
767comparison tool that we choose is Tools 4 noobs.5 Note that,

TABLE 2
Audio Round-Trip Latency When Different Policies are Applied Respectively

Microphone source Primary System FMCwith Low-Pass
Filter in effect

FMCwith Acoustic Feature
Destruction in effect

FMCwith Low-Pass Filter & Acoustic
Feature Destruction in effect

VOICE_RECOGNITION 25.43 26.85 35.96 38.75
MIC 23.16 25.41 28.87 29.26
VOICE_COMMUNICATION 23.52 29.47 35.80 37.73
CAMCORDER 23.30 28.76 29.47 31.63
REMOTE_SUBMIX 15.55 16.53 20.29 20.34

All the units of data presented in the table are milliseconds (ms). An audio source defines both a default physical source of audio signal, and a recording configura-
tion. Different audio sources will show different pre-processing latencies.

3. Larsen test. https://source.android.com/devices/audio/
latency_measure.html#larsenTest

4. Otter Voice Meeting Notes. Available: https://play.google.com/
store/apps/details?id=com.aisense.otter.

5. Tools 4 noobs. https://www.tools4noobs.com/online_tools/
string_similarity/
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768 we choose to useGoogle TTS to read the texts instead of read-
769 ing them ourselves, because we try to eliminate individual
770 variances caused by different speakers’ accents, which may
771 further interfere the accuracy of the evaluation.
772 The results show the deployment of FMC has no negative
773 effect on the functionality of this popular app. No obvious
774 drop in the recognition accuracy is witnessed with the treble
775 policy, compared with the result we get under the primary
776 system setting. Although a little fluctuation is observed with
777 the timbre policy, the lowest recognition accuracy is still
778 94 percent, which is acceptable because the regular recogni-
779 tion accuracy is around 95 to 97 percent. Therefore, we con-
780 sider that FMC preserves the usability of apps well. This is
781 due to the frequencies of human voice that are mainly dis-
782 tributed in a low-frequency interval.

783 6.2.2 Effectiveness of Acoustic Fingerprint Interference

784 Since acoustic fingerprinting is one of the most severe
785 threats which FMC faces, in this part, we conduct an experi-
786 ment to evaluate the effectiveness of FMC’s acoustic feature
787 destruction, namely, acoustic fingerprint interference.
788 FMCEffectively Perturbs the Acoustic Feature Contained in
789 Voice. One of the most popular usage scenarios of the acous-
790 tic fingerprint is voice lock. Many Finance or Social apps uti-
791 lize human voice as fingerprint to verify their users’ identities
792 before sensitive operations like confirming a payment or
793 unlocking a device. Basically, acoustic features are extracted
794 by these apps to construct a voice fingerprint during the ini-
795 tialization process. Ideally, FMC should render such func-
796 tions ineffective when the ACOUSTICS_TIMBRE permission
797 is not granted, no matter whether it is for payment confirma-
798 tion or device unlocking.
799 We choose Alipay,6 WeChat7 and Google Assistant8 to eval-
800 uate whether our timbre policy is strong enough to defend
801 against such acoustic fingerprinting threats, among which
802 Alipay and WeChat use the acoustic fingerprint as voice lock
803 to do login, and Google Assistant to unlock a device.

804At first, we initialize these three apps without FMC, thus
805to make sure that the apps can capture the acoustic features
806in experimenters’ voice exactly. During the training, for Ali-
807pay and WeChat, each of experimenters is asked to read out
808a number with eight digits while for Google Assistant, each
809of experimenters is required to say “OK, Google” and “Hey
810Google” twice respectively.
811After that, we turn on FMC with ACOUSTICS_TIMBRE

812revoked. Ten login attempts are made to enter the apps of
813Alipay and WeChat through the same experimenter’s voice,
814just as we set. Similarly, we let the same experimenters read
815out “Ok, Google” ten times to unlock the devices. If the
816acoustic feature destruction of FMC works well, the login or
817the unlock would fail. That is, the acoustic features of the
818experimenter could be totally disturbed by FMC. Then, the
819apps would not recognize the experimenter’s voice.

820� For Alipay, which works perfectly for voice login
821without FMC, fails to pass any test among all the ten
822tests where ACOUSTICS_TIMBRE is revoked.
823� For WeChat, no login success when ACOUSTIC-

824S_TIMBRE is revoked.
825� For Google Assistant, the results show that the device
826stays in lock state when ACOUSTICS_TIMBRE is
827revoked, just as expected.
828The results indicate that the timbre policy provided by FMC
829radically decreases the recognition success rate of voiceprint
830authentication in Alipay, WeChat and Google Assistant to a
831great extent. They further show the effectiveness of FMC’s
832acoustic feature interference.
833FMCPerturbs the Generation of Acoustic Fingerprints With a
834Randomized Pattern. Acoustic fingerprints generated with
835FMC’s acoustic fingerprint interference should be different
836every time. Otherwise, attackers could still make use of the
837fixed fingerprint to track the device.
838In order to verify the effects that FMC perturbs the acous-
839tic fingerprints differently every time, we conduct another
840evaluation experiment where we employ Google Assistant’s
841unlock with voice match. Different from the above experi-
842ments, the initialization process is done with FMC’s timbre
843policy enabled. Once the initialization is completed, we let
844the same experimenters try to unlock the devices. Note that,
845both the initialization and the unlock tests are performed
846while FMC’s timbre policy is enforced. If there is an obvious
847and fixed pattern of interference, the experimenters would
848unlock the devices successfully. However, in the experi-
849ment, no successful unlock occurred among all 20 attempts.
850The result shows that FMC’s acoustic fingerprinting inter-
851ference is robust and strong. Meanwhile, this experiment
852also verifies that even for acoustic fingerprints from the same
853person, they would present different features after FMC’s
854processing. This process prevents the attackers from guess-
855ing FMC’s interference pattern reversely.

8566.3 Compatibility

857We inspect FMC’s compatibility with 80 apps. We download
858the top 200 free apps from Google Play Store, and pick out all
859apps requiring RECORD_AUDIO permission. After that, we
860obtain 58 apps in total (29.0 percent). In addition, we ran-
861domly select 22 apps that do not require RECORD_AUDIO

862permission from the remaining apps. Thus, we get 80 apps.

TABLE 3
Average Results of AnTuTu Benchmarking Tests (The Integers

Indicate the Benchmarked Points Given by AnTuTu, While
the Numbers in Parentheses Indicate the Expected Range

of Values With a Confidence Interval of 95%)

with FMC w/o FMC overhead

CPUMathematics 3,905 (86.36) 3,944 (14.36) 0.99%
CPU Common Use 3,395 (47.67) 3,409 (23.43) 0.39%
CPUMulti-Core 15,588 (1,142.94) 15,843 (1,304.32) 1.61%
GPU 22,941 (43.21) 22,935 (21.35) �0.02%
UX Data Security 3,034 (8.46) 2,984 (4.90) �1.66%
UX Data Processing 3,194 (11.56) 3,238 (39.03) 1.35%
UX Image Processing 3,732 (325.10) 3,996 (414.01) 6.61%
User Experience 7,811 (115.57) 7,802 (55.88) �0.11%
RAM 1,845 (25.44) 1,838 (18.52) �0.36%
ROM 2,522 (191.55) 2,709 (3.31) 6.90%

Overall 67,967 (1,181.51) 68,699 (1,714.75) 1.06%

6. Alipay. Available: https://play.google.com/store/apps/details?
id=com.eg.android.AlipayGphone.

7. Wechat. Available: https://play.google.com/store/apps/details?
id=com.tencent.mm.

8. Google Assistant. Available: https://play.google.com/store/
apps/details?id=com.google.android.apps.googleassistant.
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864 into effect, then observe whether these apps function as nor-
865 mal without crashing or errors. For those apps requiring
866 RECORD_AUDIO, we apply different combinations of the treble
867 policy, timbre policy and exclusion policy according to the func-
868 tions of the apps and act as a user to trigger their functions.
869 The result of the above experiment shows that, when
870 testing all popular 80 apps, no abnormality, neither crash
871 nor error, happens during the compatibility test. Therefore,
872 we argue that FMC has high compatibility.

873 6.4 Code Base

874 Here, code base9 refers to a whole collection of source code
875 that is used to build FMC in Android devices. It is a critical
876 index to judge the framework’s robustness and stability, since
877 a heavy code base would lead to more uncertainty and
878 increasemaintenance costs. Themodification that FMCmade
879 mainly concentrates on two parts: one is in themediamodule
880 of Android 8.0, the other is in Android built-in app Package
881 Installer. For the media module of Android, we modify 15
882 files among which there are 7 header files with only one or
883 two lines of codes added. StreamHalHidl.cpp, lying in
884 the native layer of Android, is the most heavily modified file,
885 with 339 lines of code added or modified. For Package
886 Installer, some minor modifications are made to Android-

887 Manifest.xml and PackageInstallerActivity.

888 java. Besides, we add four new files, namely FmcContent-

889 Provider.java, FmcNewPermissionActivity.java,
890 fmc_new_permission.xml and fmcServer.java, to
891 help message passing and demonstration. For this part, 52
892 lines of codes are modified and four files with 543 new lines
893 are added. Besides, to store the sub-permission configura-
894 tions of installed apps,FMC performsCURD (Create, Update,
895 Retrieve, Delete) operations throughAPIs provided by Con-

896 tentProvider, which is based on SQLite.
897 In summary, FMC brings a small code base with about a
898 thousand lines of codes in Android devices, which is easy
899 to test and maintain.

900 7 MEASUREMENT: AN EMPIRICAL STUDY

901 In this section, we conduct an empirical study onmicrophone
902 usages and microphone-related access control requirements
903 on apps. The empirical study shows the protection cover-
904 age of FMC, as well as the application scopes of the three

905sub-permissions. These apps in the empirical study are
906crawled from a mainstream app market, Google Play Store.
907The labeled dataset we use is the same as shown in Table 1.
908Among all 33,972 apps, 49.71, 20.94 and 52.35 percent
909apps are classified as suitable for enforcing the treble policy,
910timbre policy and exclusion policy respectively, which means
911that the corresponding sub-permissions should be deprived.
912These apps are all top in the app market. However, an obvi-
913ous percentage gap exists between the timbre policy and the
914other two policies. This is due to the limited application sce-
915nario of the timbre policy.
916Furthermore, we inspect each policy individually in
917Fig. 4. For the treble policy, nearly half of the apps from all 32
918categories are recommended to enforce the policy. In Fig. 4a,
919Beauty apps, with an overall recommendation percentage of
92082.35 percent, rank the top among all the categories, which
921may be attributable to the small sample size of Beauty apps.
922The second category is Photography and the third is Weather.
923Basically, Beauty, Photography and Weather mainly consist of
924specialized utility tools with limited microphone usage sce-
925narios. It is reasonable to enforce a stricter microphone
926acoustic permission control on apps from these categories to
927avoid the abuse of private voice information by the apps.
928Interestingly, Parenting category ranks at the top when we
929evaluate the timbre policy labels. The usage scenario of Parent-
930ing appsmakes it easy formalicious apps to gather voice data.
931It is to say thatParenting apps usually require interactions
932with sound. Thus, these apps could easily defraud users and
933be granted the permission of using microphones. As a result,
934if the microphone permission is acquired by the apps ofPar-
935enting, it is better for these apps to apply a strict and finer per-
936mission control over the permission. Such apps can also come
937from Food&Drinks,House&Home,Maps&Navigation, and so on.
938For the labels of the exclusion policy, Personalization and
939Shopping occupy the top two, followed by Finance andMusic
940& Audio. Considering the usage scenarios of apps of Musi-
941c&Audio, it is unusual for a Music&Audio app to use micro-
942phones and speakers at the same time.
943Note that, some cases do exist as some interactive apps
944like Karaoke in Entertainment may require microphones and
945speakersworking at the same time. For these apps,wewould
946like to let users havemore decision-making power according
947to their actual needs (perhaps the users like to use earphones
948insteadwhen singing for better effects).
949Further, we study the overall distribution of the three-
950bits recommendations. The results are shown in Fig. 5.
951Considering the original category distribution of the data-
952set, we can see that only 25.74 percent of apps are tagged as

Fig. 4. Top categories on which the control policy should be enforced, i.e., the recommendation is to deny access. The x-axis presented the percent
of apps in the category.

9. The code base of FMC is now at https://github.com/fduDaslabFMC/
FMC/
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954 cent of the overall datasets, are tagged with 101, standing for
955 treble and exclusion restrictions are needed. 001 and 100
956 rank behind, holding 16.43 and 15.01 percent respectively.
957 Through the above empirical study, we conclude that the
958 abuse of microphone permission exists, and a wide spec-
959 trum of apps should be restricted with finer audio permis-
960 sion controls.

961 8 LIMITATIONS AND FUTURE WORK

962 Rationality of Permission and Policy Design. In FMC, we
963 design and define three fine-grained permissions, i.e.,
964 ACOUSTICS_TREBLE, ACOUSTICS_TIMBRE and ACOUS-

965 TICS_EXCLUSION, derived naturally from the acoustic fea-
966 tures and categories of existing attacks. However, the
967 rationality of the permission design needs to be further
968 studied, according to the advancement of threats on micro-
969 phones in mobile devices.
970 For now, the proposed FMC does not focus on context,
971 but it is highly flexible and can be extended to incorporate
972 other context-aware solutions [25], [26], [27], [28], where the
973 audio data are controlled as a whole.
974 Dataset Assumptions. The dataset we are using is pulled
975 and maintained manually, and we assume that for a given
976 app to be installed, its corresponding description is given in
977 advance. It means that FMC cannot make a prediction once
978 the app to be installed is out of the stored dataset or the app is
979 from another app market. To make up for the deficiency, we
980 plan to create an interaction process between our server and
981 several third-party app markets to dynamically query and
982 pull the descriptions according to the apps’ package names.
983 Alternatively, we can also further develop an extended ver-
984 sion specifically for those apps that cannot be found in app
985 markets and for those with non-English descriptions. An
986 advanced prediction model can be built based on a training
987 set of more dimensions (e.g., package name, static code scan-
988 ning reports) in addition to descriptions and the declaration
989 of RECORD_AUDIO permission. In addition, the scale of our
990 dataset used to train the prediction model in ADTP can be
991 further extended, since there is still room for improvement in
992 the prediction accuracy. We plan to conduct experiments
993 with a more diverse set of NLP tools to develop a model with
994 higher performance. Our fundamental goal is to realize a
995 more intuitive predictionwith high accuracy.
996 Model Training Accuracy and Dynamic Policy Update. In
997 FMC, we train an NLP model, named ADTP, to complete
998 the description-to-permission translation. As described in
999 Section 5.1, the prediction accuracy is 82.82 percent, which

1000 means that about 17 percent of the recommendations are

1001inaccurate. Under this circumstance, the only remedy that
1002can be made is the manual check by users. The limited accu-
1003racy would weaken the entire solution by relying on users
1004as the last line of defense. However, it would not introduce
1005new privacy leakage compared with the current all-or-noth-
1006ing model, as it simply provides the options to impose more
1007restrictions on existing access level.
1008The current FMC framework finishes its policy decision at
1009installation time. Once the policies are put into effect, we can-
1010not update or remove the permission choices and policy
1011implementation during runtime dynamically. In the future, a
1012function to re-adjust policies at runtimewill be implemented.
1013Attack Exceptions. For those attacks completed at the
1014physical level, FMC only plays a limited role because it is a
1015software based permission framework. For example, Dol-
1016phinAttack [15] utilizes the non-linearity characteristic
1017of microphone circuits in mobile devices, where voice
1018commands are modulated on ultrasonic carriers and are
1019further demodulated by circuits to normal low frequency
1020signals that can be directly recognized by speech recogni-
1021tion software. The down-mixing happens before the audio
1022data are converted to digital signals. Then the digital logic,
1023such as FMC’s treble policy, would not treat it as high fre-
1024quency component. Therefore, FMC would not restrict its
1025access. That is, the app is authorized at the software level,
1026thus could be comprised under DolphinAttack.
1027We do not owe this to FMC’s limited capability because
1028FMC only targets adversaries residing in the victim’s phone
1029and restricts their behaviors with a finer permission control.
1030However, DolphinAttack is a result of ultrasound played
1031by a remote device, to which end FMC needs not and could
1032not restrict. Note that, Zhang et al., the discoverers ofDolphi-
1033nAttack, also proposed several practical countermeasures
1034against DolphinAttack from both the hardware level and
1035software level. These countermeasures are compatible with
1036our FMC, thus can be integrated with FMC.

10379 RELATED WORK

1038Attacks leveraging sensors, like microphones, in smart devi-
1039ces are a hot topic in the field of Android security. Research-
1040ers provide some common or specific solutions to defend
1041against these attacks.
1042Attacks via Sensors in Mobile Devices. Sensor-based attacks
1043in mobile devices have caused widespread concerns in
1044recent years. There were a number of works trying to launch
1045such attacks.
1046Among all the different kinds of sensors, motion sensors
1047(e.g., accelerometers, gyroscopes), were popular because of
1048their zero-permission characteristics in mobile devices. Cai
1049et al. demonstrated an attack which could extract features
1050from devices’ orientation data to infer keystrokes, and devel-
1051oped TouchLogger [29] as a prototype. Other similar works
1052included TapLogger [30], which could infer user inputs on
1053touchscreens. Dey et al. [31] showed that the accelerometer
1054was also a key source of side channel attacks to perform pri-
1055vacy inference or device tracking. Yan et al. [32] proposed
1056Gyrophone which showed that gyroscope data from smart-
1057phoneswere enough to identify speaker information.
1058Besides, the attacks based on media sensors (i.e., camera
1059and microphone) also emerged. And such attacks could

Fig. 5. Distribution of labeled three-bits recommendations.
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1060 sometimes be accomplished by multiple sensors. PlaceR-
1061 aider [33], through the combined use of camera and other sen-
1062 sors, built three dimensional models of indoor environment
1063 then stole virtual objects. Simon et al. [6] used microphone
1064 and camera, correlating with the layout of digits on smart-
1065 phones, to realize PIN inference on smartphones. There
1066 were also fingerprinting works using microphones [3], [4].
1067 The basic idea was to uniquely identify an individual or
1068 device through playing and recording audio samples, and
1069 analyze the extracted sound features. Another example
1070 named SoundComber [5], which designed a trojan app with a
1071 few innocuous permissions, to extract private information
1072 from audio sensors in a phone. Moreover, Bojinov et al. [16]
1073 implemented an accelerometer-based fingerprinting and a
1074 speakerphone-microphone fingerprinting. Last but not least,
1075 DolphinAttack [15] successfully hit speech recognition sys-
1076 tems, such as Siri and Google Now, through inaudible voice
1077 commands injections, using the perceptual differences
1078 between acoustic components and human ears.
1079 Defending Against the Attacks on Sensors. In recent years,
1080 researchers also proposed several solutions to defend
1081 against the attacks mentioned above. Machiraju et al. [34]
1082 explored the vulnerabilities of mobile phones against sen-
1083 sor-sniffing attacks, further proposed a general framework,
1084 and discussed various possible approaches to fully imple-
1085 ment the framework. Das et al. [35], [36] discussed
1086 the defenses and countermeasures against fingerprinting
1087 through mobile devices via large-scale user studies. Beres-
1088 ford et al. [37] proposed MockDroid, which was a modified
1089 version of Android OS, allowing users to provide fake or
1090 mock data, including sensor data, to apps. Han et al. [38] pro-
1091 posed senDroid, which audited GPS, camera, microphone
1092 and standard sensor access in Android by hooking, and pro-
1093 vided auditing reports to users. Different from the above
1094 works, which provided general countermeasures or frame-
1095 works trying to manage several different kinds of sensors at
1096 the same time, FMC focuses on the microphone manage-
1097 ment only.
1098 Petracca et al. [39] proposed AuDroid, which tracked the
1099 creation of audio communication channels explicitly and
1100 controlled the information flow over these channels to pre-
1101 vent several types of voice control attacks in mobile devices.
1102 However, it differs from FMC at the implementation layer
1103 and attack scenarios.
1104 In addition, FMC is the first work to finely control the
1105 audio data and acoustic components according to their
1106 physical and concurrent features.
1107 Fine-grained Permission Control inMobile Devices.The coarse
1108 permission control of Android had been under discussion for
1109 years. There were several works trying to improve the exist-
1110 ing permission control framework. FlaskDroid [40] provided
1111 a generic security architecture for the Android OS. FlaskDroid
1112 could serve as a flexible and effective ecosystem to instantiate
1113 different security solutions. It defended against permission-
1114 related attacks from third-party applications at Android
1115 framework layer. Rashidi et al. [41] proposed a crowdsourc-
1116 ing recommendation framework, implemented as RecDroid,
1117 that facilitated a user-help-user environment when control-
1118 ling smartphone permissions. Different from FMC, RecDroid
1119 did not create new fine-grained permissions, and the feature
1120 of fine-grained heremeans it controlled permission at a system

1121service level. PolEnA [42], whichwas an extension ofAndroid
1122Security Framework (ASF), allowed for the definition of fine-
1123grained security policies and their dynamic verification. Rui
1124et al. [43] proposed a usage and access control model, and
1125provided a permission-based mandatory access control at
1126Android framework layer, Linux kernel, and hardware layer.
1127It avoided permission leakages via the ARM TrustZone secu-
1128rity extensionmechanism.
1129Smart and Context-Aware Permission Solution in Mobile
1130Devices. To address the rigidity of OS permission adminis-
1131trations and their mismatch with users’ privacy preferences,
1132machine learning technologies were quite often used by
1133prior works to assist users in deciding their permission
1134strategies in mobile devices. Bilogrevic et al. [44] proposed
1135SPISM, which adapted to each user’s behavior, and pre-
1136dicted the level of detail for each sharing decision without
1137revealing any private information. Qu et al. [45] proposed
1138Autocog which leveraged NLP technologies to verify or con-
1139figure permissions of Android apps. Recently, Gasparis
1140et al. [46] proposed Figmentwhich provided a set of libraries
1141to enforce dynamic and contextual access control for
1142Android apps. Chen et al. [47] leveraged the technologies of
1143NLP to identify hidden privacy settings in mobile apps.
1144FMC extends the prior works of the machine learning based
1145policy recommendation to implement an NLP-based policy
1146prediction and recommendation module, referred as to
1147ADTP, for three new-defined sub-permissions in FMC.
1148Here, FMC only extends the standard permission model of
1149Android, thus does not employ the feature of the context-
1150aware access control mechanism. This feature does not con-
1151flict with three new policies proposed in FMC. They can
1152cooperate with each other in a combined access control
1153model. But it is not a contribution in this paper.

115410 CONCLUSION

1155In this paper, we propose FMC which provides a fine-
1156grained and smart access control framework over micro-
1157phones on Android, offering users more granular control
1158over their audio data and ability to restrict the concurrent
1159usage with other acoustic components. By adding three
1160finer permissions, ACOUSTICS_TREBLE, ACOUSTICS_TIM-
1161BRE and ACOUSTICS_EXCLUSION, the existing Android
1162permission control framework is enhanced in security. In
1163addition, FMC leverages NLP technologies to intelligently
1164recommend permission settings to users. Evaluations in this
1165paper show that FMC protects users from microphone-
1166based attacks with an acceptable performance overhead of
11671.06 percent, and FMC is promising in terms of its compati-
1168bility and effectiveness. In addition, to the best of our
1169knowledge, this paper is the first research work to explore
1170the policy of DSoD at the operating system level.
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